Poincare, Jules Henri

Identity area

Type of entity

Person

Authorized form of name

Poincare, Jules Henri

Parallel form(s) of name

Standardized form(s) of name according to other rules

Other form(s) of name

Identifiers for corporate bodies

Description area

Dates of existence

29 April 1854 - 17 July 1912

History

(from Wikipedia entry)
Jules Henri Poincaré (French: 29 April 1854 - 17 July 1912) was a French mathematician, theoretical physicist, engineer, and a philosopher of science. He is often described as a polymath, and in mathematics as The Last Universalist by Eric Temple Bell, since he excelled in all fields of the discipline as it existed during his lifetime.

As a mathematician and physicist, he made many original fundamental contributions to pure and applied mathematics, mathematical physics, and celestial mechanics. He was responsible for formulating the Poincaré conjecture, which was one of the most famous unsolved problems in mathematics until it was solved in 2002-2003. In his research on the three-body problem, Poincaré became the first person to discover a chaotic deterministic system which laid the foundations of modern chaos theory. He is also considered to be one of the founders of the field of topology.

Poincaré made clear the importance of paying attention to the invariance of laws of physics under different transformations, and was the first to present the Lorentz transformations in their modern symmetrical form. Poincaré discovered the remaining relativistic velocity transformations and recorded them in a letter to Dutch physicist Hendrik Lorentz (1853-1928) in 1905. Thus he obtained perfect invariance of all of Maxwell's equations, an important step in the formulation of the theory of special relativity.

The Poincaré group used in physics and mathematics was named after him. Poincaré was born on 29 April 1854 in Cité Ducale neighborhood, Nancy, Meurthe-et-Moselle into an influential family. His father Leon Poincaré (1828-1892) was a professor of medicine at the University of Nancy. His adored younger sister Aline married the spiritual philosopher Emile Boutroux. Another notable member of Henri's family was his cousin, Raymond Poincaré, who would become the President of France, 1913 to 1920, and a fellow member of the Académie française. He was raised in the Roman Catholic faith. However, he later on became an agnostic and criticized religious dogmas particularly with respect to the mixing of theology and science. fter receiving his degree, Poincaré began teaching as junior lecturer in mathematics at the University of Caen in Normandy (in December 1879). At the same time he published his first major article concerning the treatment of a class of automorphic functions.

There, in Caen, he met his future wife, Louise Poulin d'Andesi (Louise Poulain d'Andecy) and on April 20, 1881, they married. Together they had four children: Jeanne (born 1887), Yvonne (born 1889), Henriette (born 1891), and Léon (born 1893).

Poincaré immediately established himself among the greatest mathematicians of Europe, attracting the attention of many prominent mathematicians. In 1881 Poincaré was invited to take a teaching position at the Faculty of Sciences of the University of Paris; he accepted the invitation. During the years of 1883 to 1897, he taught mathematical analysis in École Polytechnique.

In 1881-1882, Poincaré created a new branch of mathematics: the qualitative theory of differential equations. He showed how it is possible to derive the most important information about the behavior of a family of solutions without having to solve the equation (since this may not always be possible). He successfully used this approach to problems in celestial mechanics and mathematical physics. He never fully abandoned his mining career to mathematics. He worked at the Ministry of Public Services as an engineer in charge of northern railway development from 1881 to 1885. He eventually became chief engineer of the Corps de Mines in 1893 and inspector general in 1910.

Beginning in 1881 and for the rest of his career, he taught at the University of Paris (the Sorbonne). He was initially appointed as the maître de conférences d'analyse (associate professor of analysis). Eventually, he held the chairs of Physical and Experimental Mechanics, Mathematical Physics and Theory of Probability, and Celestial Mechanics and Astronomy.

In 1887, at the young age of 32, Poincaré was elected to the French Academy of Sciences. He became its president in 1906, and was elected to the Académie française in 1909.

In 1887, he won Oscar II, King of Sweden's mathematical competition for a resolution of the three-body problem concerning the free motion of multiple orbiting bodies.

In 1893, Poincaré joined the French Bureau des Longitudes, which engaged him in the synchronisation of time around the world. In 1897 Poincaré backed an unsuccessful proposal for the decimalisation of circular measure, and hence time and longitude. It was this post which led him to consider the question of establishing international time zones and the synchronisation of time between bodies in relative motion. (See #Work on relativity section below)

In 1899, and again more successfully in 1904, he intervened in the trials of Alfred Dreyfus. He attacked the spurious scientific claims of some of the evidence brought against Dreyfus, who was a Jewish officer in the French army charged with treason by colleagues.

In 1912, Poincaré underwent surgery for a prostate problem and subsequently died from an embolism on 17 July 1912, in Paris. He was 58 years of age. He is buried in the Poincaré family vault in the Cemetery of Montparnasse, Paris. Poincaré had two notable doctoral students at the University of Paris, Louis Bachelier (1900) and Dimitrie Pompeiu (1905) Poincaré made many contributions to different fields of pure and applied mathematics such as: celestial mechanics, fluid mechanics, optics, electricity, telegraphy, capillarity, elasticity, thermodynamics, potential theory, quantum theory, theory of relativity and physical cosmology.

He was also a popularizer of mathematics and physics and wrote several books for the lay public.

Poincaré's work habits have been compared to a bee flying from flower to flower. Poincaré was interested in the way his mind worked; he studied his habits and gave a talk about his observations in 1908 at the Institute of General Psychology in Paris. He linked his way of thinking to how he made several discoveries.

The mathematician Darboux claimed he was un intuitif (intuitive), arguing that this is demonstrated by the fact that he worked so often by visual representation. He did not care about being rigorous and disliked logic. (Despite this opinion, Jacques Hadamard wrote that Poincaré's research demonstrated marvelous clarity. and Poincaré himself wrote that he believed that logic was not a way to invent but a way to structure ideas and that logic limits ideas.) Poincaré had philosophical views opposite to those of Bertrand Russell and Gottlob Frege, who believed that mathematics was a branch of logic. Poincaré strongly disagreed, claiming that intuition was the life of mathematics. Poincaré gives an interesting point of view in his book Science and Hypothesis:

For a superficial observer, scientific truth is beyond the possibility of doubt; the logic of science is infallible, and if the scientists are sometimes mistaken, this is only from their mistaking its rule.

Poincaré believed that arithmetic is a synthetic science. He argued that Peano's axioms cannot be proven non-circularly with the principle of induction (Murzi, 1998), therefore concluding that arithmetic is a priori synthetic and not analytic. Poincaré then went on to say that mathematics cannot be deduced from logic since it is not analytic. His views were similar to those of Immanuel Kant (Kolak, 2001, Folina 1992). He strongly opposed Cantorian set theory, objecting to its use of impredicative definitions.

However, Poincaré did not share Kantian views in all branches of philosophy and mathematics. For example, in geometry, Poincaré believed that the structure of non-Euclidean space can be known analytically. Poincaré held that convention plays an important role in physics. His view (and some later, more extreme versions of it) came to be known as "conventionalism". Poincaré believed that Newton's first law was not empirical but is a conventional framework assumption for mechanics. He also believed that the geometry of physical space is conventional. He considered examples in which either the geometry of the physical fields or gradients of temperature can be changed, either describing a space as non-Euclidean measured by rigid rulers, or as a Euclidean space where the rulers are expanded or shrunk by a variable heat distribution. However, Poincaré thought that we were so accustomed to Euclidean geometry that we would prefer to change the physical laws to save Euclidean geometry rather than shift to a non-Euclidean physical geometry. Poincaré's famous lectures before the Société de Psychologie in Paris (published as Science and Hypothesis, The Value of Science, and Science and Method) were cited by Jacques Hadamard as the source for the idea that creativity and invention consist of two mental stages, first random combinations of possible solutions to a problem, followed by a critical evaluation.

Although he most often spoke of a deterministic universe, Poincaré said that the subconscious generation of new possibilities involves chance.

For more information, see Wikipedia entry at: http://en.wikipedia.org/wiki/Henri_Poincar%C3%A9 .

Places

Legal status

Functions, occupations and activities

Mandates/sources of authority

Internal structures/genealogy

General context

Relationships area

Related entity

Welby, Victoria, Lady, 1837-1912 (1837-1912)

Identifier of the related entity

29543057

Category of the relationship

associative

Dates of the relationship

1905

Description of relationship

correspondent

Access points area

Occupations

Control area

Authority record identifier

Institution identifier

Rules and/or conventions used

Status

Final

Level of detail

Partial

Dates of creation, revision and deletion

Created 2015-10-29 by Anna St.Onge.

Language(s)

  • English

Script(s)

  • Latin

Sources

http://viaf.org/viaf/51694558
http://en.wikipedia.org/wiki/Henri_Poincar%C3%A9

Maintenance notes

  • Clipboard

  • Export

  • EAC